Người Tìm Ra Định Luật Vật Lý / Top 10 # Xem Nhiều Nhất & Mới Nhất 3/2023 # Top View | 2atlantic.edu.vn

Định Luật Bảo Toàn Năng Lượng, Và Các Nhà Vật Lí Tìm Ra Nó

Định luật bảo toàn và chuyển hóa năng lượng: năng lượng không tự nhiên sinh ra cũng không tự nhiên mất đi, nó chỉ chuyển hóa từ dạng này sang dạng khác hoặc từ vật này sang vật khác đây được coi là định luật cơ bản của vật lí học.

Năm 1841 Julius Robert Mayer (1814- 1878) nhà vật lí học người Đức, nghiên cứu y khoa tại Tbingen, Munich và Paris, sau một chuyến đi thực tế ông đã gửi một đề tài nghiên cứu “Về việc xác định các lực về mặt số lượng và chất lượng” gởi tới tạp chí “Biên niên vật lí học”. (tổng biên tập Poghendoc của tạp chí đã không đăng bài đó cũng không trả lại bản thảo cho tác giả. Ba mươi sáu năm sau, người ta lại tìm thấy bài báo này trên bàn giấy của Poghendoc, khi ông đã chết.)

Trong bài báo đó, với những lập luận chưa rõ ràng, không có thí nghiệm, không có tính toán định lượng, ông nói về những “lực không thể bị huỷ diệt”. Ở phần kết ông viết “Chuyển động, nhiệt và cả điện nữa, như chúng tôi dự định sẽ chứng minh sau này, là những hiện tượng mà có thể quy về cùng một lực, có thể đo được cái này bằng cái kia, và chuyển hoá cái nọ thành cái kia theo những quy luật nhất định”. Ở đây chưa phát biểu lên một định luật nào nhưng đã toát lên được một ý tưởng rõ nét về định luật bảo toàn và chuyển hóa năng lượng. Poghendoc đánh giá đó là một bài báo mang tính triết học chung chung.

Năm 1842 Mayer gửi công trình thứ hai mang tên “Nhận xét về các lực của thế giới vô sinh” đăng trên tạp chí “Biên niên hoá học và dược học”. Ông đưa ra lập luận chung: “lực” là nguyên nhân gây ra mọi hiện tượng, mỗi hiện tượng đều là một hiệu quả nào đó của những hiện tượng nào đó trước nó, và cũng là những hiện tượng nào đó sau nó. Trong chuỗi vô hạn các nguyên nhân và hiệu quả, không có số hạng nào có thể bị triệt tiêu, và do đó “lực” không thể bị huỷ diệt. Sau đó Mayer phân tích sự chuyển hoá “lực rơi”(thế năng) của một vật thành “hoạt lực”(động năng) của nó, sự chuyển hoá “hoạt lực” thành”lực rơi”, hoặc “hoạt lực” thành nhiệt. Ông kết luận “Lực là những đối tượng không trọng lượng, không bị huỷ diệt, và có khả năng chuyển hoá”. Như vậy, định luật bảo toàn và chuyển hóa năng lượng lúc này đã được Mayer phát biểu một cách rõ ràng.

Năm 1845, Mayer hoàn thành một công trình mới: “Chuyển động hữu cơ trong mối liên hệ với sự trao đổi chất” tạp chí “Biên niên hoá học và dược học” không nhận đăng bài này, vì đang cần đăng nhiều ông trình mới về hoá học. Mayer quyết định tự xuất bản công trình này thành một quyển sách nhỏ. Ông tìm cách vận dụng những tư tưởng cơ học vào sinh học. Ông nêu rằng “lực” là nguyên nhân của mọi chuyển động, “hiệu quả cơ học” (cơ năng) bao gồm “lực rơi” và “hoạt lực” và “nhiệt cũng là một lực” nó có thể biến thành hiệu quả cơ học.

Trong ba công trình nói trên, Mayer đã nêu lên được tư tưởng tổng quát về định luật bảo toàn và chuyển hóa năng lượng, đã phân tích những trường hợp cụ thể về việc chuyển hoá năng lượng, đã tìm ra một cách tính đương lượng cơ của nhiệt, và nêu lên được bức tranh tổng quát về chuyển hoá năng lượng trong vũ trụ. Không may cho ông, công trình thứ nhất của ông đã không được công bố, công trình thứ hai in trên một tạp chí không được các nhà vật lí đọc đến, vì lúc đó ông chưa là một nhân vật có tên tuổi.

Trong khi lý thuyết vật lí về các hiện tượng vật lí trong cơ học, quan học và điện học đã bước một bước dài thì nhiệt học dường như vẫn còn dậm chân tại chỗ trong nửa đầu thế kỉ XIX. Chính những lý thuyết về nhiệt học, nhiệt động lực học chưa phát triển khiến việc chứng minh định luật bảo toàn và chuyển hóa năng lượng trở nên khó khăn hơn.

Năm 1790, Rumpho đã thực hiện một thí nghiệm bằng cách ngâm một nòng súng trong một thùng nước và khoan nó bằng một chiếc khoan cùn, sau hai giờ rưỡi thì nước bắt đầu sôi. Ông cho rằng đây là thí nghiệm chứng tỏ nhiệt là một loại chuyển động, tuy nhiên thời kỳ đó các nhà vật lí đều cho rằng “chất nhiệt” ở đây đã được chảy ra từ nòng súng giống như người ta vắt một quả chanh. Do chưa có khái niệm về công cơ học nên về cơ bản thí nghiệm trên của Rumpho không mang ý nghĩa vật lí nào.

Năm 1826 khái niệm công cơ học ra đời và được công nhận, năm 1845 với thí nghiệm khuấy nước nổi tiếng James Prescott Joule đã chứng minh sự chuyển hóa năng lượng từ công thành nhiệt năng, từ đó kiểm nghiệm tính đúng đắn và là nền tảng cho định luật bảo toàn và chuyển hóa năng lượng.Thí nghiệm khuấy nước nổi tiếng của James Prescott Joule

https://youtu.be/RK4Kll8J5DA

Hermann Ludwig Ferdinand von Helmholtz ( 1821 – 1894) là một bác sỹ và nhà vật lí người Đức. Công trình khoa học quan trọng đầu tiên của ông, một luận án vật lí về sự bảo toàn năng lượng viết 1847 được viết ra trong bối cảnh nghiên cứu về y học và triết học của ông. Ông khám phá ra định luật bảo toàn và chuyển hóa năng lượng khi nghiên cứu về sự trao đổi chất của cơ bắp. Ông cố gắng diễn đạt rằng không có sự mất đi của năng lượng trong sự chuyển động của cơ bắp, bắt nguồn từ suy luận là không cần một “lực sống” nào để lay chuyển cơ bắp. Đây là sự phủ nhận phỏng đoán truyền thống của Naturphilosophie mà vào thời điểm đó là một triết lý khá phổ biến trong ngành sinh lý học Đức (tại thời điểm đó ất nhiều những nhà nghiên cứu đã sử dụng từ “sinh lực” để giải thích cho những cái họ không thể giải thích nổi, dường như “sinh lực” này có thể tạo ra năng lượng một cách liên tục không bao giờ ngưng nghỉ mà không cần phải tuân theo bất kỳ định luật vật lí, hóa học nào.

Helmholtz quyết định mở rộng phạm vi của nguyên lý bảo toàn năng lượng, đem nó ứng dụng vào các trường hợp khác nhau. Do vậy ông đã nghiên cứu rất nhiều những phát hiện của các nhà khoa học như James Joule, Julius Mayer, Pierre Laplace, Antoine Lavoisier cùng nhiều nhà khoa học khác đã từng có những nghiên cứu về sự chuyển hóa qua lại hay sự bảo toàn của một loại năng lượng nào đó.

Helmholtz đã phát triển những lý luận sẵn có trên cơ sở thực nghiệm, kết quả đã lần lượt chứng minh năng lượng vĩnh viễn không tự nhiên mất đi, nó có thể chuyển hóa thành nhiệt, âm thanh, ánh sáng… Nhưng chúng ta luôn có thể tìm thấy nó và giải thích được nó.Năm 1847, Helmholtz nhận ra những nghiên cứu của ông đã chứng minh lý luận phổ biến của bảo toàn năng lượng là: năng lượng trong vũ trụ (hay bất kì một hệ kín nào) luôn bảo toàn, năng lượng có thể chuyển hóa dưới nhiều dạng khác nhau như điện, từ, hóa năng, động năng, quang năng, nhiệt năng, âm thanh, thế năng…, nhưng năng lượng không tự nhiên sinh ra và cũng không tự nhiên mất đi.

Thách thức lớn nhất đối với lý luận của Helmholtz đến từ phía các nhà thiên văn học nghiên cứu về mặt trời. Nếu như mặt trời không tự sinh ra ánh sáng và nhiệt năng thì số năng lượng khổng lồ do nó tỏa ra do đâu mà có? Nó không thể giống như vật chất tự đốt cháy mình bằng lửa. Các nhà khoa học từ lâu đã chứng minh: Nếu mặt trời cũng giống như các chất tự đốt cháy mình để sinh ra ánh sáng và nhiệt thì không đầy 20 triệu năm nó sẽ bị cháy hết.

Phải mất đến năm năm, Helmholtz mới làm sáng tỏ được vấn đề, đáp án chính là lực hấp dẫn. Mặt trời bị lún về phía trong nó một cách từ từ, đồng thời lực hấp dẫn đã chuyển hóa thành ánh sáng và nhiệt. Câu trả lời đó của Helmholtz đã được người đười sau ông công nhận (tổng cộng 80 năm cho đến khi phát hiện ra năng lượng hạt nhân và phản ứng nhiệt hạch ra đời). Nhưng quan trọng hơn cả là định luật bảo toàn và chuyển hóa năng lượng đã được phát hiện ra và được công nhận.

Mặc dù có rất nhiều nhà nghiên cứu độc lập cùng tìm cách minh chứng cho tính đúng đắn định luật bảo toàn và chuyển hóa năng lượng, nhưng các nhà vật lí học đều công nhận người tìm ra định luật bảo toàn và chuyển hóa năng lượng đầu tiên là Julius Robert Mayer.

Tìm Hiểu Về Vật Hấp Dẫn Và Định Luật Vạn Vật Hấp Dẫn

Định luật vạn vật hấp dẫn của Newton là định luật do Isaac Newton nhà vật lý vĩ đại mà thế giới từng sản sinh khám phá ra. Định luật này khẳng định rằng mọi vật trong vũ trụ đều hút nhau với một lực được gọi là lực hấp dẫn. Và theo đó, lực hấp dẫn giữa hai chất điểm bất kì tỉ lệ thuận với tích hai khối lượng của chúng và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. Để hiểu rõ hơn về định luật, cùng với chung tôi tìm hiểu trong bài viết này.

Tóm tắt định luật vạn vập hấp dẫn

Lực hấp dẫn

Mọi vật trong vũ trụ đều hút nhau với một lực gọi là lực hấp dẫn. Lực hấp dẫn là lực tác dụng từ xa, qua khoảng không gian giữa các vật. Lực hấp dẫn phổ biến nhất và có nhiều ý nghĩa thực tiễn nhất là lực hấp dẫn giữa trái đất và các vật trên trái đất.

Định luật vạn vật hấp dẫn

♦ Trong hệ thức trên thì:

Fhd: Lực hấp dẫn (N)

m1, m2 là khối lượng của hai chất điểm

r là khoảng cách giữa chúng

G = 6,67.10-11 Nm2/kg2 gọi là hắng số hấp dẫn.

→ Lưu ý rằng, trong quá trình học thuộc công thức thì chúng ta cần phải nắm rõ ý nghĩa của từng kí hiệu. Từ đó việc học thuộc sẽ đơn giản hơn và tránh sai lầm trong quá trình áp dụng vào tính toán

Đặc điểm của lực hấp dẫn

Để hiểu được lực hấp dẫn, ta tìm hiểu qua 3 phương diện như sau:

Là lực hút.

Điểm đặt: Đặt tại trọng tâm của vật (chất điểm).

Giá của lực: Là đường thẳng đi qua tâm 2 vật.

♦♦ Chú ý: Định luật vạn vật hấp dẫn chỉ đúng khi khoảng cách giữa hai vật rất lớn so với kích thước của chúng hoặc các vật đồng chất và có dạng hình cầu. Thường thì trong bài toán luôn cho thỏa mãn hai điều kiện trên.

Trường hợp riêng của lực hấp dẫn là “trọng lực”

Định nghĩa về trọng lực: Trọng lực của một vật là lực hấp dẫn giữa Trái đất và vật đó. Trọng lực đặt vào trọng tâm của vật. Khi thả rơi một vật có khối lượng m ở độ cao h so với mặt đất thì trọng lượng P tác dụng lên vật (lực hấp dẫn giữa Trái đất và vật) là:

Lực này truyền cho vật m gia tốc rơi tự do g. Theo định luật II Newton, ta có: P=m.g (2)

→ Như đã trình bày ở phần giới thiệu thì lực hấp dẫn của Trái Đất lên mọi vật được xác định là lực hấp dẫn có vai trò nhiều nhất. Và được gọi với một cái tên khác là trọng lực.

Gia tốc rơi tự do là gì?

Từ các công thức (1) và (2) ở trên, ta suy ra được:

→ g ở đây chính là gia tốc rơi tự do. Thường thì trong các bài tập, gia tốc rơi tự do lấy sắp xỉ bằng 10. Đôi khi cũng có thể là 9.8 m / s^2

Những vật gần Trái Đất có tác động gì bởi lực hấp dẫn?

Khi h<<R, ta có:

(kí hiệu h<<R cho chúng ta biết h nhỏ hơn R rất rất nhiều)

Nhận xét: Gia tốc rơi tự do g không chỉ phụ thuộc vào vĩ độ trên Trái Đất mà còn phụ thuộc vào độ cao và độ sâu so với mặt đất.

Bài tập củng cố

A. Lực hấp dẫn có phương trùng với đường thẳng nối hai chất điểm.

Câu 1: Chọn phát biểu sai trong các phát biểu bên dưới khi nói về lực hấp dẫn giữa hai chất điểm?

B. Lực hấp dẫn có điểm đặt tại mỗi chất điểm.

C. Lực hấp dẫn của hai chất điểm là cặp lực trực đối.

D. Lực hấp dẫn của hai chất điểm là cặp lực cân bằng.

Đáp án: D. Lực hấp dẫn của hai chất điểm là cặp lực cân bằng.

A. Trọng lực có độ lớn được xác định bởi biểu thức P = mg.

C. Trọng lực tỉ lệ nghịch với khối lượng của vật.

D. Trọng lực là lực hút của Trái Đất tác dụng lên vật.

Đáp án: C. Trọng lực tỉ lệ nghịch với khối lượng của vật.

Đáp án: A. g = GM / (R+h)^2

Câu 4: Một viên đá nằm cố định trên mặt đất, giá trị lực hấp dẫn của Trái Đất tác động vào hòn đá thế nào? Chọn đáp án trả lời chính xác nhất cho câu hỏi bên trên.

B. nhỏ hơn trọng lượng của hòn đá.

C. bằng trọng lượng của hòn đá

D. bằng 0.

Đáp án: C. bằng trọng lượng của hòn đá

A. 1,0672.10-8 N.

Câu 5: Cho hai quả cầu có khối lượng 20 kg, bán kính 10 cm, khoảng cách giữa hai tâm là 50 cm. Biết rằng số hấp dẫn là G. Độ lớn lực tương tác hấp dẫn giữa chúng bao nhiêu? Biết rằng đây là hai quả cầu đồng chất.

B. 1,0672.10-6 N.

C. 1,0672.10-7 N.

D. 1,0672.10-5 N.

Đáp án: C. 1,0672.10-7 N.

A. 2F.

C. 8F.

D. 4F.

Đáp án: C. 8F.

A. 0,204.1021 N.

Câu 7: Khoảng cách giữa Mặt Trăng và tâm Trái Đất là 38.107 m; khối lượng Mặt Trăng và Trái Đất tương ứng là 7,37.1022 kg và 6.1024 kg; hằng số hấp dẫn G = 1,0672.10-8 N. Tính độ lớn lực hấp dẫn giữa Trái Đất và Mặt Trăng. Chọn đáp án chính xác trong các câu trả lời sau:

B. 2,04.1021 N.

C. 22.1025 N.

D. 2.1027 N.

Đáp án: A. 0,204.1021 N.

A. 1 N.

Câu 8: Ở mặt đất một vật có trọng lượng 10 N. Nếu chuyển vật này ở độ cao cách Trái Đât một khoảng R (R là bán kính Trái Đất) thì trọng lượng của vât bằng bao nhiêu? Chọn đáp án chính xác nhất. Có thể làm tròn số.

B. 2,5 N.

C. 5 N.

D. 10 N.

Đáp án: B. 2,5 N.

A. 324,7 m.

Câu 9: Biết gia tốc rơi tự do ơtại đỉnh và chân núi là 9,809 m/s2 và 9,810 m/s2. Coi Trái Đất là đồng chất và chân núi cách tâm Trái Đất 6370 km. Học sinh hãy tìm ra độ cao của ngọn núi có làm tròn số.

B. 640 m.

C. 649,4 m.

D. 325 m.

Đáp án: A. 324,7 m.

A. 56,5 lần.

Câu 10: Biết khoảng cách trung bình giữa tâm Trái Đất và tâm Mặt Trăng gấp 60 lần bán kính Trái Đất; khối lượng Mặt Trăng < khối lượng Trái Đất 81 lần. Có vật M nằm trên đường thẳng nối tâm Trái Đất và tâm Mặt Trăng mà ở đó có lực hấp dẫn của Trái Đất và của Mặt Trăng cân bằng. So với bán kính Trái Đất, khoảng cách tự M đền tâm Trái Đất gấp bao nhiêu lần? Chọn đáp án chính xác cho câu hỏi bên trên?

B. 54 lần.

C. 48 lần.

D. 32 lần.

Đáp án: B. 54 lần.

Giáo Án Vật Lý 10 Bài 10: Ba Định Luật Niu

1. Kiến thức 2. Kỹ năng II. CHUẨN BỊ Học sinh : III. TIẾN TRÌNH DẠY -HỌC (Tiết 1)

Trình bày thí nghiệm Galilê.

Trình bày dự đoán của Galilê.

Nêu và phân tích định luật I Newton.

Nêu khái niệm quán tính.

Yêu cầu hs trả lời C1.

Nhận xét về quãng đường hòn bi lăn được trên máng nghiêng 2 khi thay đổi độ nghiêng của máng này.

Đọc sgk, tìm hiểu định luật I.

Ghi nhận khái niệm.

Vận dụng khái niệm quán tính để trả lời C1.

I. Định luật I Newton. 1. Thí ngihệm lịch sử của Galilê. 2. Định luật I Newton.

Nếu một vật không chịu tác dụng của lực nào hoặc chịu tác dụng của các lực có hợp lực bằng không. Thì vật đang đứng yên sẽ tiếp tục đứng yên, đang chuyển động sẽ tiếp tục chuyển động thẳng đều.

3. Quán tính.

Quán tính là tính chất của mọi vật có xu hướng bảo toàn vận tốc của về hướng và độ lớn.

II. Định luật II Newton. 1. Định luật .

Gia tốc của một vật cùng hướng với lực tác dụng lên vật. Độ lớn của gia tốc tỉ lệ với độ lớn của lực và tỉ lệ nghịch với khối lượng của vật.

2. Khối lượng và mức quán tính.

a) Định nghĩa.

Khối lượng là đại lượng đặc trưng cho mức quán tính của vật.

b) Tính chất của khối lượng.

+ Khối lượng là một đại lượng vô hướng, dương và không đổi đối với mỗi vật.

+ Khối lượng có tính chất cộng.

3. Trọng lực. Trọng lượng.

a) Trọng lực.

Trọng lực là lực của Trái Đất tác dụng vào vật, gây ra cho chúng gia tốc rơi tự do. Trọng lực được kí hiệu là . Trọng lực tác dụng lên vật đặt tại trọng tâm của vật.

b) Trọng lượng.

Độ lớn của trọng lực tác dụng lên một vật gọi là trọng lượng của vật, kí hiệu là P. Trọng lượng của vật được đo bằng lực kế.

c) Công thức của trọng lực.

III. Định luật III Newton. 1. Sự tương tác giữa các vật.

Khi một vật tác dụng lên vật khác một lực thì vật đó cũng bị vật kia tác dụng ngược trở lại một lực. Ta nói giữa 2 vật có sự tương tác.

2. Định luật.

Trong mọi trường hợp, khi vật A tác dụng lên vật B một lực, thì vật B cũng tác dụng lại vật A một lực. Hai lực này có cùng giá, cùng độ lớn nhưng ngược chiều.

3. Lực và phản lực.

Một trong hai lực tương tác giữa hai vật gọi là lực tác dụng còn lực kia gọi là phản lực.

Đặc điểm của lực và phản lực :

+ Lực và phản lực luôn luôn xuất hiện (hoặc mất đi) đồng thời.

+ Lực và phản lực có cùng giá, cùng độ lớn nhưng ngược chiều. Hai lực có đặc điểm như vậy gọi là hai lực trực đối.

+ Lực và phản lực không cân bằng nhau vì chúng đặt vào hai vật khác nhau.

Yêu cầu hs giải tại lớp các bài tập 11, 12 trang 62.

Hướng dẫn hs áp dụng định luật II và III để giải.

Giải các bài tập 11, 12 trang 62 sgk.

Ôn Cố Tri Tân: Phải Cách Ly Tại Gia Bởi Dịch Hạch, Issac Newton Tìm Ra Định Luật Vạn Vật Hấp Dẫn

Isaac Newton khoảng 20 tuổi khi Đại dịch hạch Luân Đôn xảy ra. Lúc đó ông chưa được phong tước hiệp sĩ hay mang bộ tóc giả trang trọng đó. Lúc đó ông mới chỉ là một sinh viên đại học bình thường tại Trinity College của Đại học Cambridge.

Phải 200 năm sau đó các nhà khoa học mới phát hiện ra vi khuẩn gây nên bệnh dịch hạch, nhưng ngay cả khi không biết chính xác nguyên nhân, mọi người thời đó vẫn thực hiện một số điều tương tự như chúng ta đang làm để phòng tránh dịch bệnh.

Trong năm 1665, điều đó tương tự như biện pháp “cách ly xã hội” – một biện pháp y tế công cộng đang được thực hiện trong tuần này khi các chính phủ, trường học và nhiều doanh nghiệp, bao gồm tòa soạn báo The Washington Post, yêu cầu mọi người ở nhà nhằm làm chậm sự lây lan của virus Corona mới.

Đại học Cambridge cho sinh viên về nhà để tiếp tục học tập. Đối với Newton, điều đó có nghĩa là trở về Woolsthorpe Manor, dinh thự của gia đình ông cách Cambridge khoảng 60 dặm về phía tây bắc.

Dù không có giáo sư để hướng dẫn mình, Newton vẫn hoạt động hiệu quả. Quãng thời gian hơn một năm ông không đến trường về sau được gọi là annus mirabilis, hay “năm của những điều kỳ diệu”.

Đầu tiên, ông tiếp tục nghiên cứu các vấn đề toán học mà ông đang làm tại Cambridge; các bài viết của ông về những vấn đề trên sau này trở thành những công trình mở đường của môn giải tích.

Tiếp đó, ông mua một vài lăng kính và thử nghiệm với chúng trong phòng ngủ của mình, thậm chí còn khoan một lỗ trên cửa chớp để chỉ một tia sáng nhỏ có thể xuyên qua. Từ đó nảy ra lý thuyết của ông về quang học.

Và ngay bên ngoài cửa sổ nhà ông tại Woolsthorpe, có một cây táo. Chính là cây táo huyền thoại đó. Câu chuyện về việc Newton ngồi dưới gốc cây, bị một quả táo rơi vào đầu và đột nhiên hiểu các lý thuyết về trọng lực và chuyển động, phần lớn là hư cấu. Nhưng theo trợ lý của ông, John Conduitt, có một phần là sự thật. Đây là lời giải thích của Conduitt:

“…Khi đang nghỉ ngơi trong khu vườn, ông tự nhiên nghĩ rằng sức mạnh của trọng lực (có thể làm cho một quả táo rơi từ trên cây xuống mặt đất) hẳn không bị giới hạn trong một khoảng cách nhất định tính từ bề mặt trái đất mà có thể lớn hơn nhiều so với mọi người nghĩ. ‘Tại sao không thể cao lên tới Mặt trăng?’ Ông đã tự hỏi vậy…”

Chúng ta đều biết, định luật vạn vật hấp dẫn là định luật do nhà vật lý học Isaac Newton khám phá ra, và thường được cho là đã hình thành sau khi ông bị “táo rơi vào đầu”. Định luật này khẳng định mọi vật trong vũ trụ đều hút nhau với một lực gọi là lực hấp dẫn. Theo đó, lực hấp dẫn giữa hai chất điểm bất kì tỉ lệ thuận với tích hai khối lượng của chúng và tỉ lệ nghịch với bình phương khoảng cách giữa chúng.

Ở Luân Đôn, một phần tư dân số chết vì bệnh dịch hạch trong khoảng thời gian từ năm 1665 đến năm 1666. Đây là một trong những vụ bùng phát lớn cuối cùng trong 400 năm Đại dịch Cái Chết Đen tàn phá châu Âu.

Newton trở lại Cambridge năm 1667 với lý thuyết trong tay. Trong vòng sáu tháng, ông đã trở thành một nghiên cứu viên; hai năm sau, ông đạt danh hiệu giáo sư.

Vì vậy, nếu bạn làm việc hoặc học tập ở nhà trong vài tuần tới, hãy nhớ tới ví dụ của Newton và phát minh vĩ đại của ông.