Xu Hướng 3/2023 # Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập # Top 8 View | 2atlantic.edu.vn

Xu Hướng 3/2023 # Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập # Top 8 View

Bạn đang xem bài viết Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập được cập nhật mới nhất trên website 2atlantic.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Định lý Pytago (hay còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý pitago thuận phát biểu rằng trong 1 tam giác vuông bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh góc vuông. Định lý có thể viết thành một phương trình liên hệ giữa độ dài của các cạnh là a, b và c, thường gọi là công thức Pytago: (c^2=a^2+b^2) (trong đó c độ dài là cạnh huyền, a,b lần lượt là độ dài 2 cạnh góc vuông). Ngoài ra, định lý pitago là một trong 17 phương trình thay đổi thế giới

Như vậy trong bất kì 1 tam giác vuông nào thì bình phương cạnh huyền cũng sẽ bằng tổng bình phương hai cạnh góc vuông.

Theo định lý cho biết, cạnh góc vuông của tam giác kí hiệu là a và b, còn cạnh huyền kí hiệu là c của tam giác vuông đó. Ta luôn có phương trình của định lý Pitago như sau:

 (a^2+b^2=c^2)  (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)   

Từ đó ta có công thức tính cạnh huyền tam giác vuông như sau: c=√(a²+b²) với c là cạnh huyền và a, b là độ dài 2 cạnh tam giác vuông

2. Cách chứng minh định lý pitago

Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)^2

Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện băng nhau là 1/2(a.b). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.

Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: (c^2=a^2+b^2)

3. Định lý pitago đảo

3.1. Khái niệm

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Định lý Pytago đảo được sử dụng rất phổ biến cũng như gồm nhiều ứng dụng trong thực tiễn. Đây là một định lý toán học quan trọng hàng đầu của hình học cơ bản.

3.2. Chứng minh định lý pytago đảo

Gọi ABC là tam giác với các cạnh a, b, và c, với (a^2+b^2=c^2). Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.

Chứng minh định lý pytago đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.

Nếu

(a^2 + b^2 = c^2)

, thì tam giác là tam giác vuông.

Nếu

(a^2 + b^2 < c^2)

, thì nó là tam giác tù.

4. Những điều cần lưu ý khi học định lý Pitago

Khi học định lý Pitago, để nắm chắc và áp dụng tốt trong quá trình làm và giải các bài tập, bạn cần lưu ý các điều sau:

* Cạnh huyền của tam giác vuông luôn:

Cắt ngang qua góc vuông mà không đi qua góc vuông

Đây là cạnh dài nhất của tam giác vuông

Cạnh huyền được gọi là C trong định lý Pitago

* Khi tính, bạn cần phải kiểm tra lại kết quả.

* Nhìn vào hình, bạn sẽ biết đâu là cạnh huyền vì đó là cạnh dài nhất đối diện góc lớn nhất. Còn cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.

* Ta chỉ tính được cạnh thứ 3 khi biết độ dài 2 cạnh còn lại trong tam giác vuông

* Nếu tam giác không phải là tam giác vuông, ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm thông tin ngoài chiều dài 2 cạnh.

* Bạn nên vẽ tam giác để dễ dàng gán giá trị chính xác cho các cạnh a, b và c. Đặc biệt, các bài toán từ và toán logic áp dụng nhiều hơn cả.

* Nếu chỉ biết số đo một cạnh, ta không thể dùng định lý pitago để tính mà sẽ phải dùng hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.

Đây là những lưu ý quan trọng để bạn có thể sử dụng định lý một cách linh hoạt cũng như trong những điều kiện nào thì không thể áp dụng được.

5. Cách áp dụng định lý pitago

5. 1. Cách tìm các cạnh của tam giác vuông

Dựa theo định lý Pitago, ta sẽ cùng đi tìm các cạnh của tam giác vuông theo các bước sau:

Bước 1: Điều kiện tam giác đang xét phải là tam giác vuông

Định lý Pitago chỉ áp dụng được cho trường hợp tam giác vuông. Vì vậy, để tìm được các cạnh của tam giác vuông, hình tam giác đó phải có điều kiện là tam giác vuông với một góc bằng 90 độ. Bạn có thể tìm thấy dấu hiệu hình tam giác vuông trên hình vẽ rất dễ dàng.

Bước 2: Chỉ ra được các cạnh của hình tam giác vuông

Nhìn vào hình, bạn hãy chỉ ra 2 cạnh góc vuông và cạnh huyền. Cạnh luôn đối diện với góc vuông, là cạnh dài nhất sẽ là cạnh huyền. Hai cạnh ngắn hơn sẽ mặc định là 2 cạnh góc vuông. Ví dụ nếu tam giác ABC có cạnh góc vuông là ABC thì cạnh góc vuông là cạnh AB và BC còn cạnh huyền là AC. Theo định lý Pitago, a, b là kí hiệu của 2 cạnh góc vuông, c là kí hiệu của cạnh huyền.

Bước 3: Xác định cạnh huyền cần tìm của tam giác vuông đó

Với định lý Pitago, ta có thể tìm được độ dài bất kỳ của cạnh của một tam giác vuông nào bằng công thức trên chỉ cần biết chiều dài 2 cạnh còn lại: (a^2+b^2=c^2). Có nghĩa là bạn sẽ xác định cạnh chưa biết là a, b hay c. Nếu đã biết độ dài của 2 cạnh và 1 cạnh chưa biết của hình tam giác, bạn có thể bắt đầu.

Ví dụ: Nếu bạn đã biết cạnh huyền và một trong các cạnh bên còn lại sẽ dễ dàng tính được cạnh thứ 3 theo công thức ở trên.

Nếu có hai cạnh chưa biết độ dài, bạn cần xác định một cạnh nữa mới có thể sử dụng định lý Pitago. Bạn sẽ dùng các hàm lượng giác cơ bản để tìm độ dài của một cạnh nữa nếu biết số đo của một góc nhọn trong tam giác đó.

Bước 4: Thay giá trị độ dài 2 cạnh vào phương trình (a^2+b^2=c^2)

Trong đó, a, b là hai cạnh góc vuông, c là cạnh huyền. Nếu a = 3, c = 5 ta có (3^2 + b^2  = 5^2)

Bước 5: Tính bình phương

Giải phương trình, bạn tính bình phương mỗi cạnh đã biết. Nếu đơn giản, bạn để ở dạng số mũ rồi tính sau. Trong ví dụ này, bình phương lên ta được 9 + (b^2) = 25

Bước 6: Tách biến chưa biết sang một vế của phương trình

Bước 7: Giảm bình phương của cả hai vế phương trình

Kết quả (b^2) = 16 cho thấy một vế của phương trình còn một biến bình phương còn vế kia là một số xác định. Giảm bình phương của cả 2 vế ta sẽ được b = 4. Như vậy kết quả của bài toán là 4, chiều dài số đo của cạnh cần tìm.

Bước 8: Sử dụng định lý Pitago để tìm cạnh của tam giác vuông trong thực tế

Định lý Pitago được sử dụng rất nhiều trong thực tế. Vì vậy, bạn chỉ cần nhận biết tam giác vuông trong thực tế trong bất kỳ trường hợp nào. Áp dụng vào thực tế cuộc sống, chỉ cần 2 đường thẳng giao nhau hoặc 2 vật giao nhau tạo ra một góc vuông đồng thời có một đường thẳng hay vật thứ 3 cắt chéo qua góc vuông đã tạo ra một hình tam giác vuông. Từ đó, bạn có thể sử dụng định lý pitago tìm độ dài cạnh nào đó khi biết số đo 2 cạnh còn lại.

5. 2. Cách tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y

Khi đã biết 2 tọa độ (x,y) là (6, 1), (3, 5), ta sẽ tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y theo các bước sau:

Bước 1: Xác định 2 điểm trong mặt phẳng X-Y

Dựa vào định lý Pitago, ta dễ dàng tính được khoảng cách đường thẳng giữa 2 điểm trong mặt phẳng X-Y. Lúc này, ta chỉ cần biết tọa độ x và y của 2 điểm bất kỳ. Bình thường tọa độ x, y sẽ được viết theo cặp thứ tự là tọa độ (x,y)

Muốn tìm khoảng cách giữa 2 điểm này, ta coi mỗi điểm là một trong những góc nhọn của tam giác vuông để thực hiện tính số đo chiều dài cạnh a, cạnh b sau đó tính tiếp độ dài cạnh c là khoảng cách giữa 2 điểm.

Bước 2: Vẽ 2 điểm trên đồ thị

Tọa độ (x, y) trên mặt phẳng X-Y, trong đó x là tọa độ trên trục hoành, y là tọa độ trên trục tung. Từ đó, bạn có thể tìm khoảng cách giữa 2 điểm mà không cần vẽ đồ thị. Vẽ đồ thị ra, hình vẽ sẽ giúp ta nhìn trực quan và rõ ràng hơn rất nhiều.

Bước 3: Tìm độ dài các cạnh góc vuông của tam giác

Như vậy, hai cạnh còn lại của tam giác vuông này là a = 3, b = 4.

Bước 4: Dùng định lý pitago giải phương trình tìm cạnh huyền

Ở ví dụ ở trên, ta biết cạnh huyền là khoảng cách giữa 2 điểm của hình tam giác và tìm được 2 cạnh góc vuông còn lại ở trên. Bây giờ, chúng ta tìm cạnh huyền khi biết độ dài 2 cạnh góc vuông mà ta đặt là cạnh a và cạnh b.

Bài Tập Định Lý Pytago

Bài 1: Cho DABC vuông tại A. biết AB + AC = 49cm; AB – AC = 7cm. Tính cạnh BC. Bài 2: Cho DABC vuông tại A. có BC = 26cm, AB:AC = 5:12. Tính độ dài AB và AC. Bài 3:Cho DABC vuông tại A. Kẻ đ ường cao AH. Biết BH = 18 cm; CH = 32cm. Tính các cạnh AB và AC. Bài 4:Cho DABC có AB = 9cm; AC = 11cm. Kẻ đ ư ờng cao AH, bi ết BH = 26cm. Tính CH ? Bài 5: Cho DABC vuông tại A. Kẻ AH ^ BC. a/ Chứng minh: AB2 + CH2 = AC2 + BH2 b/ Trên AB lấy E, trên AC lấy đi ểm F. Ch ứng minh: EF < BC. c/ Bi ết AB = 6cm, AC = 8 cm. Tính AH, BH, CH. Bài 6: Cho DABC cân, AB = AC = 17cm. Kẻ BD ^ AC. Tính BC, biết BD = 15cm. Bài 7: Cho DABC. Biết BC = 52cm, AB = 20cm, AC = 48cm. a/ CM: DABC vuông ở A. b/ Kẻ AH ^ BC. Tính AH. Bài 8: Hãy kiểm tra xem tam giác ABC có phải là tam giác vuông không nếu các cạnh AB, AC và BC tỉ lệ với: a/ 9; 12 và 15 b/ 3; 2,4 và 1,8. c/ 4; 6 và 7 d/ 4; 4 và 4. Bài 9: Cho DABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy E sao cho HE = AD. Đường vuông góc với AH tại D cắt AC tại F. Chứng minh rằng: EB ^ EF. Bài 10:Từ một điểm O tuỳ ý trong DABC, kẻ OA1, OB1, OC1 lần lượt vuông góc với các cạnh BC, CA, AB. Chứng minh rằng: Bài 11: Cho DABC cân tại A, biết góc A bằng 300, BC = 2cm. Trên cạnh AC lấy điểm D sao cho góc CBD bằng 600. Chứng minh: AD =

Định Lý Pitago Là Gì? Hệ Quả Và Các Ứng Dụng Của Định Lý Pitago

Số lượt đọc bài viết: 8.167

Mặc dù những hiểu biết về mối liên hệ trong định lý Pitago được cho là đã được biết đến trước thời của ông, nhưng từ những tư liệu lịch sử đã ghi lại, ông được coi là người đầu tiên chứng minh được định lý này.

Sau này, Pytago theo đuổi nền khoa học ở các dân tộc khác nhau, điều này khiến ông từng dành nhiều năm nghiên cứu tại Ấn Độ, Ai Cập, Babylon và đương nhiên ông trở nên uyên bác ở hầu hết các lĩnh vực quan trọng như Số học, hình học, y học, triết học, thiên văn học….

Lý thuyết định lý Pitago

Ngoài Pytago, có một số chứng cứ cho rằng các nhà toán học Babylon đã hiểu về công thức này, mặc dù có ít tư liệu cho thấy họ đã sử dụng nó trong khuôn khổ của toán học. . Các nhà toán học khu vực Ấn Độ, Trung Quốc và Lưỡng Hà cũng đã tự khám phá ra định lý này và ở một số nơi, họ còn đã đưa ra chứng minh cho một số trường hợp đặc biệt.

Định lý Pitago còn được tổng quát hóa bằng nhiều cách khác nhau, bao gồm cho không gian đa chiều, không gian phi Euclid, cho các tam giác bất kỳ,…

Định lý Pitago còn thu hút nhiều sự chú ý từ bên ngoài phạm vi toán học, như là một biểu tượng toán học thâm sâu, bí ẩn, hay sức mạnh của trí tuệ; nó còn được nhắc tới khá nhiều trong văn học, âm nhạc, con tem hay phim ảnh.

ĐỊnh lý có thể viết thành một phương trình liên hệ độ dài của các cạnh tam giác là a, b, c, thường được gọi là “công thức Pitago”:

Cụ thể: Với (Delta ABC) vuông tại A, ta sẽ có:

Lý thuyết định lý Pitago đảo được phát biểu như sau:

Nếu một tam giác bất kỳ có bình phương của một cạnh bằng tổng bình phương hai cạnh còn lại thì tam giác đó là tam giác vuông.

Ví dụ trong (Delta ABC), nếu (BC^{2}=AB^{2}+AC^{2}) thì (Delta ABC) là tam giác vuông tại A.

Có thể chứng minh định lý đảo trên bằng cách sử dụng định lý Cos hoặc định lý Pitago thuận.

Hệ quả của định lý Pitago đảo là có thể xác định được tam giác đó là tam giác gì (tam giác tù, vuông, hay nhọn).

Hệ quả và các ứng dụng của định lý Pitago

Một bộ ba số Pytago là ba số nguyên dương , , , sao cho atex]a^{2}+b^{2}=c^{2}[/latex] . Những chứng cứ từ những điểm khảo cổ ở miền bắc châu Âu cho thấy người cổ đại đã biết đến những bộ ba này trước điểm có những văn tự ghi chép lại. Các bộ ba số này thường được viết là (a, b, c). Một số bộ hay gặp là (3, 4, 5) và (5, 12, 13).

Liệt kê các bộ ba số Pytago nguyên thủy nhỏ hơn 100 (gồm 16 bộ số):

(3, 4, 5), (5, 12, 13), (7, 24, 25), (8, 15, 17), (9, 40, 41), (11, 60, 61), (12, 35, 37), (13, 84, 85), (16, 63, 65), (20, 21, 29), (28, 45, 53), (33, 56, 65), (36, 77, 85), (39, 80, 89), (48, 55, 73), (65, 72, 97).

Với một số phức bất kỳ (z=x+iy) thì giá trị tuyệt đối hay môđun của nó cho bởi:

Xét về mặt hình học thi r là khoảng cách từ đến điểm hoặc gốc tọa độ trong mặt phẳng phức.

đây cũng chính là dạng phương trình Pytago.

(Sintheta =frac{b}{c},Costheta =frac{a}{c}).

với bước cuối cùng áp dụng định lý Pitago.

Liên hệ giữa sin và cos đôi khi được gọi là đồng nhất thức lượng giác Pytago cơ bản.

tu khoa

Please follow and like us:

Định Luật Vạn Vật Hấp Dẫn Là Gì? Bài Tập Áp Dụng Lý Thuyết Định Luật

Định luật vạn vật hấp dẫn được nhà vật lý Isaac Newton khám phá ra khi bị quả táo rơi vào đầu. Ông rút ra được rằng mọi vật trong vũ trụ đều hút nhau với một lực được gọi là lực hấp dẫn. Và lực hấp dẫn giữa hai chất điểm bất kì tỉ lệ thuận với tích của hai khối lượng và tỉ lệ nghịch với bình phương khoảng cách giữa chúng.

Kiến thức về định luật vạn vật hấp dẫn

Lực hấp dẫn

Mọi vật trong vũ trụ đều hút nhau bởi một lực là lực hấp dẫn. Lực hấp dẫn là lực tác dụng từ xa, qua khoảng không gian giữa các vật. Lực hấp dẫn phổ biến nhất hiện nay chính là lực hấp dẫn giữa trái đất và các vật trên trái đất.

Định luật vạn vật hấp dẫn

Lực hấp dẫn giữa hai điểm bất kì sẽ tỉ lệ thuận với tích hai khối lượng và tỉ lệ nghịch với bình phương khoảng cách giữa chúng. Ta có thể biểu diễn qua công thức sau đây:

Trong đó:

F là lực hấp dẫn (N)

m1, m2 là khối lượng của hai chất điểm

r là khoảng cách giữa chúng

G = 6,67.10-11 Nm2/kg2 gọi là hằng số hấp dẫn

Đặc điểm của lực hấp dẫn

Đặc điểm của lực hấp dẫn được thể hiện qua 3 phương diện sau:

Là lực hút

Điểm đặt tại trọng tâm của vật (chất điểm)

Giá của lực là đường thẳng đi qua tâm của 2 vật

Định luật vạn vật hấp dẫn chỉ đúng khi khoảng cách giữa hai vật rất lớn so với kích thước của chúng. Hay có thể đúng với các vật đồng chất và có dạng hình cầu.

Tìm hiểu về trọng lực

Trọng lực của một vật chính là lực hấp dẫn giữa Trái đất và chính vật đó. Trọng lực sẽ được đặt vào trọng tâm của vật. Trọng lực của vật sẽ được tính theo công thức sau đây:

Trong đó:

P là lực hấp dẫn giữa Trái đất và vật tác động

m là khối lượng

h là độ cao so với mặt đất

G = 6,67.10-11 Nm2/kg2 gọi là hằng số hấp dẫn

M là khối lượng trái đất

Mặt khác: P = m.g để suy ra được công thức của gia tốc rơi tự do.

Gia tốc rơi tự do là gì?

Công thức trên chỉ ra được rằng g chính là gia tốc rơi tự do. Để thuận lợi hơn trong khi giải bài tập thì gia tốc rơi tự do thường được quy định xấp xỉ bằng 10. Cụ thể là 9.8m/s^2

Những vật gần Trái Đất chịu sự tác động như thế nào từ lực hấp dẫn?

Ta có công thức tính gia tốc rơi tự do của vật khi h nhỏ hơn rất nhiều so với R:

Ta kết luận được rằng gia tốc rơi tự do g không chỉ phụ thuộc vào vĩ độ trên Trái Đất mà còn phụ thuộc vào độ cao của vật so với mặt đất.

Bài tập củng cố kiến thức

Bài tập lý thuyết về định luật vạn vật hấp dẫn

Câu 1: Chọn phát biểu sai trong các phát biểu bên dưới khi nói về lực hấp dẫn giữa hai chất điểm?

Đáp án: D

Đáp án: C

Câu 3: Một viên đá nằm cố định trên mặt đất. Hãy xác định giá trị lực hấp dẫn của Trái Đất tác động lên viên đá trên?

Đáp án: C

Bài tập có số liệu tính toán định luật vạn vật hấp dẫn

Câu 4: Cho hai quả cầu có khối lượng 20kg, bán kính 10cm, khoảng cách giữa hai tâm đo được là 50cm. Hãy xác định độ lớn lực hấp dẫn giữa hai quả cầu là bao nhiêu? Biết rằng đây là hai quả cầu đồng chất.

Đáp án: C

Câu 5: Hai quả cầu giống nhau được đặt cách nhau một khoảng r, lực hấp dẫn giữa chúng là F. Khi chúng ta thay một trong hai quả cầu trên bằng một quả cầu đồng chất khác. Với bán kính lớn gấp hai lần và giữ nguyên khoảng cách giữa hai tâm. Hãy xác định lực hấp dẫn giữa 2 quả cầu mới?

Đáp án: C

Câu 6: Khoảng cách giữa Mặt Trăng với tâm Trái Đất là 38.107 m; khối lượng Mặt Trăng là 7,37.1022kg, Trái Đất là 6.1024 kg. Biết hằng số hấp dẫn G = 1,0672.10-8N. Hãy xác định độ lớn lực hấp dẫn giữa Trái Đất và Mặt Trăng?

Đáp án: A

Câu 7: Đặt 1 quả cầu có trọng lượng 10 N ở mặt đất. Nếu chuyển quả cầu ở độ cao cách Trái Đất một khoảng R là bán kính Trái Đất. Hãy xác định trọng lượng của quả cầu?

Đáp án: B

Bài tập gia tốc trong định luật vạn vật hấp dẫn

Câu 8: Biết gia tốc rơi tự do tại đỉnh núi và chân núi lần lượt là 9,809 m/s2 và 9,810 m/s2. Coi Trái Đất là đồng chất và chân núi cách tâm Trái Đất 6370km. Hãy xác định độ cao của ngọn núi?

Đáp án: A

Câu 9: Ta có khoảng cách giữa tâm Trái Đất và tâm Mặt Trăng trung bình gấp 60 lần bán kính Trái Đất. Khối lượng Mặt Trăng < khối lượng Trái Đất khoảng 81 lần. Cho 1 vật M nằm trên đường thẳng nối tâm của Trái Đất và Mặt Trăng. Biết lúc này lực hấp dẫn của Trái Đất và của Mặt Trăng cân bằng. Hãy xác định khoảng cách từ vật M đến tâm Trái Đất gấp bao nhiêu lần?

Đáp án: B

Cập nhật thông tin chi tiết về Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập trên website 2atlantic.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!