Xu Hướng 3/2024 # Bài Tập Định Lý Pytago # Top 11 Xem Nhiều

Bạn đang xem bài viết Bài Tập Định Lý Pytago được cập nhật mới nhất tháng 3 năm 2024 trên website 2atlantic.edu.vn. Hy vọng những thông tin mà chúng tôi đã chia sẻ là hữu ích với bạn. Nếu nội dung hay, ý nghĩa bạn hãy chia sẻ với bạn bè của mình và luôn theo dõi, ủng hộ chúng tôi để cập nhật những thông tin mới nhất.

Bài 1: Cho DABC vuông tại A. biết AB + AC = 49cm; AB – AC = 7cm. Tính cạnh BC. Bài 2: Cho DABC vuông tại A. có BC = 26cm, AB:AC = 5:12. Tính độ dài AB và AC. Bài 3:Cho DABC vuông tại A. Kẻ đ ường cao AH. Biết BH = 18 cm; CH = 32cm. Tính các cạnh AB và AC. Bài 4:Cho DABC có AB = 9cm; AC = 11cm. Kẻ đ ư ờng cao AH, bi ết BH = 26cm. Tính CH ? Bài 5: Cho DABC vuông tại A. Kẻ AH ^ BC. a/ Chứng minh: AB2 + CH2 = AC2 + BH2 b/ Trên AB lấy E, trên AC lấy đi ểm F. Ch ứng minh: EF < BC. c/ Bi ết AB = 6cm, AC = 8 cm. Tính AH, BH, CH. Bài 6: Cho DABC cân, AB = AC = 17cm. Kẻ BD ^ AC. Tính BC, biết BD = 15cm. Bài 7: Cho DABC. Biết BC = 52cm, AB = 20cm, AC = 48cm. a/ CM: DABC vuông ở A. b/ Kẻ AH ^ BC. Tính AH. Bài 8: Hãy kiểm tra xem tam giác ABC có phải là tam giác vuông không nếu các cạnh AB, AC và BC tỉ lệ với: a/ 9; 12 và 15 b/ 3; 2,4 và 1,8. c/ 4; 6 và 7 d/ 4; 4 và 4. Bài 9: Cho DABC vuông tại A, đường cao AH, trên đó lấy điểm D. Trên tia đối của tia HA lấy E sao cho HE = AD. Đường vuông góc với AH tại D cắt AC tại F. Chứng minh rằng: EB ^ EF. Bài 10:Từ một điểm O tuỳ ý trong DABC, kẻ OA1, OB1, OC1 lần lượt vuông góc với các cạnh BC, CA, AB. Chứng minh rằng: Bài 11: Cho DABC cân tại A, biết góc A bằng 300, BC = 2cm. Trên cạnh AC lấy điểm D sao cho góc CBD bằng 600. Chứng minh: AD =

Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập

Định lý Pytago (hay còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý pitago thuận phát biểu rằng trong 1 tam giác vuông bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh góc vuông. Định lý có thể viết thành một phương trình liên hệ giữa độ dài của các cạnh là a, b và c, thường gọi là công thức Pytago: (c^2=a^2+b^2) (trong đó c độ dài là cạnh huyền, a,b lần lượt là độ dài 2 cạnh góc vuông). Ngoài ra, định lý pitago là một trong 17 phương trình thay đổi thế giới

Như vậy trong bất kì 1 tam giác vuông nào thì bình phương cạnh huyền cũng sẽ bằng tổng bình phương hai cạnh góc vuông.

Theo định lý cho biết, cạnh góc vuông của tam giác kí hiệu là a và b, còn cạnh huyền kí hiệu là c của tam giác vuông đó. Ta luôn có phương trình của định lý Pitago như sau:

 (a^2+b^2=c^2)  (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)   

Từ đó ta có công thức tính cạnh huyền tam giác vuông như sau: c=√(a²+b²) với c là cạnh huyền và a, b là độ dài 2 cạnh tam giác vuông

2. Cách chứng minh định lý pitago

Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)^2

Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện băng nhau là 1/2(a.b). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.

Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: (c^2=a^2+b^2)

3. Định lý pitago đảo

3.1. Khái niệm

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Định lý Pytago đảo được sử dụng rất phổ biến cũng như gồm nhiều ứng dụng trong thực tiễn. Đây là một định lý toán học quan trọng hàng đầu của hình học cơ bản.

3.2. Chứng minh định lý pytago đảo

Gọi ABC là tam giác với các cạnh a, b, và c, với (a^2+b^2=c^2). Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.

Chứng minh định lý pytago đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.

Nếu

(a^2 + b^2 = c^2)

, thì tam giác là tam giác vuông.

Nếu

(a^2 + b^2 < c^2)

, thì nó là tam giác tù.

4. Những điều cần lưu ý khi học định lý Pitago

Khi học định lý Pitago, để nắm chắc và áp dụng tốt trong quá trình làm và giải các bài tập, bạn cần lưu ý các điều sau:

* Cạnh huyền của tam giác vuông luôn:

Cắt ngang qua góc vuông mà không đi qua góc vuông

Đây là cạnh dài nhất của tam giác vuông

Cạnh huyền được gọi là C trong định lý Pitago

* Khi tính, bạn cần phải kiểm tra lại kết quả.

* Nhìn vào hình, bạn sẽ biết đâu là cạnh huyền vì đó là cạnh dài nhất đối diện góc lớn nhất. Còn cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.

* Ta chỉ tính được cạnh thứ 3 khi biết độ dài 2 cạnh còn lại trong tam giác vuông

* Nếu tam giác không phải là tam giác vuông, ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm thông tin ngoài chiều dài 2 cạnh.

* Bạn nên vẽ tam giác để dễ dàng gán giá trị chính xác cho các cạnh a, b và c. Đặc biệt, các bài toán từ và toán logic áp dụng nhiều hơn cả.

* Nếu chỉ biết số đo một cạnh, ta không thể dùng định lý pitago để tính mà sẽ phải dùng hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.

Đây là những lưu ý quan trọng để bạn có thể sử dụng định lý một cách linh hoạt cũng như trong những điều kiện nào thì không thể áp dụng được.

5. Cách áp dụng định lý pitago

5. 1. Cách tìm các cạnh của tam giác vuông

Dựa theo định lý Pitago, ta sẽ cùng đi tìm các cạnh của tam giác vuông theo các bước sau:

Bước 1: Điều kiện tam giác đang xét phải là tam giác vuông

Định lý Pitago chỉ áp dụng được cho trường hợp tam giác vuông. Vì vậy, để tìm được các cạnh của tam giác vuông, hình tam giác đó phải có điều kiện là tam giác vuông với một góc bằng 90 độ. Bạn có thể tìm thấy dấu hiệu hình tam giác vuông trên hình vẽ rất dễ dàng.

Bước 2: Chỉ ra được các cạnh của hình tam giác vuông

Nhìn vào hình, bạn hãy chỉ ra 2 cạnh góc vuông và cạnh huyền. Cạnh luôn đối diện với góc vuông, là cạnh dài nhất sẽ là cạnh huyền. Hai cạnh ngắn hơn sẽ mặc định là 2 cạnh góc vuông. Ví dụ nếu tam giác ABC có cạnh góc vuông là ABC thì cạnh góc vuông là cạnh AB và BC còn cạnh huyền là AC. Theo định lý Pitago, a, b là kí hiệu của 2 cạnh góc vuông, c là kí hiệu của cạnh huyền.

Bước 3: Xác định cạnh huyền cần tìm của tam giác vuông đó

Với định lý Pitago, ta có thể tìm được độ dài bất kỳ của cạnh của một tam giác vuông nào bằng công thức trên chỉ cần biết chiều dài 2 cạnh còn lại: (a^2+b^2=c^2). Có nghĩa là bạn sẽ xác định cạnh chưa biết là a, b hay c. Nếu đã biết độ dài của 2 cạnh và 1 cạnh chưa biết của hình tam giác, bạn có thể bắt đầu.

Ví dụ: Nếu bạn đã biết cạnh huyền và một trong các cạnh bên còn lại sẽ dễ dàng tính được cạnh thứ 3 theo công thức ở trên.

Nếu có hai cạnh chưa biết độ dài, bạn cần xác định một cạnh nữa mới có thể sử dụng định lý Pitago. Bạn sẽ dùng các hàm lượng giác cơ bản để tìm độ dài của một cạnh nữa nếu biết số đo của một góc nhọn trong tam giác đó.

Bước 4: Thay giá trị độ dài 2 cạnh vào phương trình (a^2+b^2=c^2)

Trong đó, a, b là hai cạnh góc vuông, c là cạnh huyền. Nếu a = 3, c = 5 ta có (3^2 + b^2  = 5^2)

Bước 5: Tính bình phương

Giải phương trình, bạn tính bình phương mỗi cạnh đã biết. Nếu đơn giản, bạn để ở dạng số mũ rồi tính sau. Trong ví dụ này, bình phương lên ta được 9 + (b^2) = 25

Bước 6: Tách biến chưa biết sang một vế của phương trình

Bước 7: Giảm bình phương của cả hai vế phương trình

Kết quả (b^2) = 16 cho thấy một vế của phương trình còn một biến bình phương còn vế kia là một số xác định. Giảm bình phương của cả 2 vế ta sẽ được b = 4. Như vậy kết quả của bài toán là 4, chiều dài số đo của cạnh cần tìm.

Bước 8: Sử dụng định lý Pitago để tìm cạnh của tam giác vuông trong thực tế

Định lý Pitago được sử dụng rất nhiều trong thực tế. Vì vậy, bạn chỉ cần nhận biết tam giác vuông trong thực tế trong bất kỳ trường hợp nào. Áp dụng vào thực tế cuộc sống, chỉ cần 2 đường thẳng giao nhau hoặc 2 vật giao nhau tạo ra một góc vuông đồng thời có một đường thẳng hay vật thứ 3 cắt chéo qua góc vuông đã tạo ra một hình tam giác vuông. Từ đó, bạn có thể sử dụng định lý pitago tìm độ dài cạnh nào đó khi biết số đo 2 cạnh còn lại.

5. 2. Cách tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y

Khi đã biết 2 tọa độ (x,y) là (6, 1), (3, 5), ta sẽ tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y theo các bước sau:

Bước 1: Xác định 2 điểm trong mặt phẳng X-Y

Dựa vào định lý Pitago, ta dễ dàng tính được khoảng cách đường thẳng giữa 2 điểm trong mặt phẳng X-Y. Lúc này, ta chỉ cần biết tọa độ x và y của 2 điểm bất kỳ. Bình thường tọa độ x, y sẽ được viết theo cặp thứ tự là tọa độ (x,y)

Muốn tìm khoảng cách giữa 2 điểm này, ta coi mỗi điểm là một trong những góc nhọn của tam giác vuông để thực hiện tính số đo chiều dài cạnh a, cạnh b sau đó tính tiếp độ dài cạnh c là khoảng cách giữa 2 điểm.

Bước 2: Vẽ 2 điểm trên đồ thị

Tọa độ (x, y) trên mặt phẳng X-Y, trong đó x là tọa độ trên trục hoành, y là tọa độ trên trục tung. Từ đó, bạn có thể tìm khoảng cách giữa 2 điểm mà không cần vẽ đồ thị. Vẽ đồ thị ra, hình vẽ sẽ giúp ta nhìn trực quan và rõ ràng hơn rất nhiều.

Bước 3: Tìm độ dài các cạnh góc vuông của tam giác

Như vậy, hai cạnh còn lại của tam giác vuông này là a = 3, b = 4.

Bước 4: Dùng định lý pitago giải phương trình tìm cạnh huyền

Ở ví dụ ở trên, ta biết cạnh huyền là khoảng cách giữa 2 điểm của hình tam giác và tìm được 2 cạnh góc vuông còn lại ở trên. Bây giờ, chúng ta tìm cạnh huyền khi biết độ dài 2 cạnh góc vuông mà ta đặt là cạnh a và cạnh b.

Lý Thuyết Định Lý Pytago Và Cách Áp Dụng Định Lý Pitago Làm Bài Tập

Định lý Pytago (hay còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý pitago thuận phát biểu rằng trong 1 tam giác vuông bình phương cạnh huyền (cạnh đối diện với góc vuông) bằng tổng bình phương của hai cạnh góc vuông. Định lý có thể viết thành một phương trình liên hệ giữa độ dài của các cạnh là a, b và c, thường gọi là công thức Pytago: (c^2=a^2+b^2) (trong đó c độ dài là cạnh huyền, a,b lần lượt là độ dài 2 cạnh góc vuông).

Như vậy trong bất kì 1 tam giác vuông nào thì bình phương cạnh huyền cũng sẽ bằng tổng bình phương hai cạnh góc vuông.

Theo định lý cho biết, cạnh góc vuông của tam giác kí hiệu là a và b, còn cạnh huyền kí hiệu là c của tam giác vuông đó. Ta luôn có phương trình của định lý Pitago như sau:

(a^2+b^2=c^2) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)

Cách chứng minh định lý pitago

Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)^2

Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện băng nhau là 1/2(a.b). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.

Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: (c^2=a^2+b^2)

Khái niệm: Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh còn lại thì tam giác đó là tam giác vuông.

Định lý Pitago được sử dụng rất phổ biến cũng như gồm nhiều ứng dụng trong thực tiễn. Đây là một định lý toán học quan trọng hàng đầu của hình học cơ bản.

Chứng minh định lý pitago đảo:

Gọi ABC là tam giác với các cạnh a, b, và c, với . Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.

Chứng minh định lý đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.

3. Những điều cần lưu ý khi học định lý Pitago

Khi học định lý Pitago, để nắm chắc và áp dụng tốt trong quá trình làm và giải các bài tập, bạn cần lưu ý các điều sau:

* Cạnh huyền của tam giác vuông luôn:

Cắt ngang qua góc vuông mà không đi qua góc vuông

Đây là cạnh dài nhất của tam giác vuông

Cạnh huyền được gọi là C trong định lý Pitago

* Khi tính, bạn cần phải kiểm tra lại kết quả.

* Nhìn vào hình, bạn sẽ biết đâu là cạnh huyền vì đó là cạnh dài nhất đối diện góc lớn nhất. Còn cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.

* Ta chỉ tính được cạnh thứ 3 khi biết độ dài 2 cạnh còn lại trong tam giác vuông

* Nếu tam giác không phải là tam giác vuông, ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm thông tin ngoài chiều dài 2 cạnh.

* Bạn nên vẽ tam giác để dễ dàng gán giá trị chính xác cho các cạnh a, b và c. Đặc biệt, các bài toán từ và toán logic áp dụng nhiều hơn cả.

* Nếu chỉ biết số đo một cạnh, ta không thể dùng định lý pitago để tính mà sẽ phải dùng hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.

Đây là những lưu ý quan trọng để bạn có thể sử dụng định lý một cách linh hoạt cũng như trong những điều kiện nào thì không thể áp dụng được.

4. Cách áp dụng định lý pitago 4. 1. Cách tìm các cạnh của tam giác vuông

Dựa theo định lý Pitago, ta sẽ cùng đi tìm các cạnh của tam giác vuông theo các bước sau:

Bước 1: Điều kiện tam giác đang xét phải là tam giác vuông

Định lý Pitago chỉ áp dụng được cho trường hợp tam giác vuông. Vì vậy, để tìm được các cạnh của tam giác vuông, hình tam giác đó phải có điều kiện là tam giác vuông với một góc bằng 90 độ. Bạn có thể tìm thấy dấu hiệu hình tam giác vuông trên hình vẽ rất dễ dàng.

Bước 2: Chỉ ra được các cạnh của hình tam giác vuông

Nhìn vào hình, bạn hãy chỉ ra 2 cạnh góc vuông và cạnh huyền. Cạnh luôn đối diện với góc vuông, là cạnh dài nhất sẽ là cạnh huyền. Hai cạnh ngắn hơn sẽ mặc định là 2 cạnh góc vuông. Ví dụ nếu tam giác ABC có cạnh góc vuông là ABC thì cạnh góc vuông là cạnh AB và BC còn cạnh huyền là AC. Theo định lý Pitago, a, b là kí hiệu của 2 cạnh góc vuông, c là kí hiệu của cạnh huyền.

Bước 3: Xác định cạnh huyền cần tìm của tam giác vuông đó

Với định lý Pitago, ta có thể tìm được độ dài bất kỳ của cạnh của một tam giác vuông nào bằng công thức trên chỉ cần biết chiều dài 2 cạnh còn lại: (a^2+b^2=c^2). Có nghĩa là bạn sẽ xác định cạnh chưa biết là a, b hay c. Nếu đã biết độ dài của 2 cạnh và 1 cạnh chưa biết của hình tam giác, bạn có thể bắt đầu.

Ví dụ: Nếu bạn đã biết cạnh huyền và một trong các cạnh bên còn lại sẽ dễ dàng tính được cạnh thứ 3 theo công thức ở trên.

Nếu có hai cạnh chưa biết độ dài, bạn cần xác định một cạnh nữa mới có thể sử dụng định lý Pitago. Bạn sẽ dùng các hàm lượng giác cơ bản để tìm độ dài của một cạnh nữa nếu biết số đo của một góc nhọn trong tam giác đó.

Bước 4: Thay giá trị độ dài 2 cạnh vào phương trình (a^2+b^2=c^2)

Trong đó, a, b là hai cạnh góc vuông, c là cạnh huyền. Nếu a = 3, c = 5 ta có (3^2 + b^2 = 5^2)

Giải phương trình, bạn tính bình phương mỗi cạnh đã biết. Nếu đơn giản, bạn để ở dạng số mũ rồi tính sau. Trong ví dụ này, bình phương lên ta được 9 + (b^2) = 25

Bước 6: Tách biến chưa biết sang một vế của phương trình

Bước 7: Giảm bình phương của cả hai vế phương trình

Kết quả (b^2) = 16 cho thấy một vế của phương trình còn một biến bình phương còn vế kia là một số xác định. Giảm bình phương của cả 2 vế ta sẽ được b = 4. Như vậy kết quả của bài toán là 4, chiều dài số đo của cạnh cần tìm.

Bước 8: Sử dụng định lý Pitago để tìm cạnh của tam giác vuông trong thực tế

Định lý Pitago được sử dụng rất nhiều trong thực tế. Vì vậy, bạn chỉ cần nhận biết tam giác vuông trong thực tế trong bất kỳ trường hợp nào. Áp dụng vào thực tế cuộc sống, chỉ cần 2 đường thẳng giao nhau hoặc 2 vật giao nhau tạo ra một góc vuông đồng thời có một đường thẳng hay vật thứ 3 cắt chéo qua góc vuông đã tạo ra một hình tam giác vuông. Từ đó, bạn có thể sử dụng định lý pitago tìm độ dài cạnh nào đó khi biết số đo 2 cạnh còn lại.

4. 2. Cách tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y

Khi đã biết 2 tọa độ (x,y) là (6, 1), (3, 5), ta sẽ tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y theo các bước sau:

Bước 1: Xác định 2 điểm trong mặt phẳng X-Y

Dựa vào định lý Pitago, ta dễ dàng tính được khoảng cách đường thẳng giữa 2 điểm trong mặt phẳng X-Y. Lúc này, ta chỉ cần biết tọa độ x và y của 2 điểm bất kỳ. Bình thường tọa độ x, y sẽ được viết theo cặp thứ tự là tọa độ (x,y)

Muốn tìm khoảng cách giữa 2 điểm này, ta coi mỗi điểm là một trong những góc nhọn của tam giác vuông để thực hiện tính số đo chiều dài cạnh a, cạnh b sau đó tính tiếp độ dài cạnh c là khoảng cách giữa 2 điểm.

Bước 2: Vẽ 2 điểm trên đồ thị

Tọa độ (x, y) trên mặt phẳng X-Y, trong đó x là tọa độ trên trục hoành, y là tọa độ trên trục tung. Từ đó, bạn có thể tìm khoảng cách giữa 2 điểm mà không cần vẽ đồ thị. Vẽ đồ thị ra, hình vẽ sẽ giúp ta nhìn trực quan và rõ ràng hơn rất nhiều.

Bước 3: Tìm độ dài các cạnh góc vuông của tam giác

Như vậy, hai cạnh còn lại của tam giác vuông này là a = 3, b = 4.

Bước 4: Dùng định lý pitago giải phương trình tìm cạnh huyền

Ở ví dụ ở trên, ta biết cạnh huyền là khoảng cách giữa 2 điểm của hình tam giác và tìm được 2 cạnh góc vuông còn lại ở trên. Bây giờ, chúng ta tìm cạnh huyền khi biết độ dài 2 cạnh góc vuông mà ta đặt là cạnh a và cạnh b.

Giải Toán Lớp 7 Bài 7: Định Lý Pytago Đầy Đủ Nhất

Tham khảo các bài học trước đó: Giải Toán Lớp 7 Bài 12: Số thực đầy đủ nhất Giải Toán Lớp 7 Bài 2: Hai tam giác bằng nhau đầy đủ nhất

1. Bài 7: Định lý Pytago 1.1. Bài tập ứng dụng

Hướng dẫn giải câu hỏi ứng dụng kèm bài tập Toán lớp 7 trang 129, 130, 131 bao gồm lời giải chi tiết, phương pháp giải mỗi bài rõ ràng giúp các em hiểu sâu lời giải, các kiến thức lý thuyết ứng dụng. Dễ dàng giải quyết các bài tập tương tự.

Câu hỏi 1 trang 129:

Vẽ một tam giác vuông có các cạnh góc vuông bằng 3cm và 4cm. Đo độ dài cạnh huyền

Hướng dẫn giải chi tiết:

Đo được cạnh huyền 5cm

Câu hỏi 2 trang 129:

Lấy giấy trắng cắt tám tam giác vuông bằng nhau. Trong mỗi tam giác vuông đó, ta gọi độ dài các cạnh góc vuông là a và b, gọi độ dài cạnh huyền là c. Cắt hai tấm bìa hình vuông có cạnh bằng a+b

a) Đặt bốn tam giác vuông lên tấm bìa hình vuông như hình 121. Phần bìa không bị che lấp là một hình vuông có cạnh bằng c, tính diện tích phần bìa đó theo c

b) Đặt bốn tam giác vuông còn lại lên tấm bìa hình vuông thứ hai như hình 122. Phần bìa không bị che lấp gồm hai hình vuông có cạnh là a và b; tính diện tích phần bìa đó theo a và b

c) từ đó rút ra nhận xét gì về quan hệ giữa c 2 và a 2 + b 2 ?

Phương pháp giải:

Sử dụng công thức tính diện tích hình vuông cạnh a là S=a 2

Hướng dẫn giải chi tiết:

a) diện tích phần bìa hình vuông cạnh c là c 2

b) diện tích hai phần bìa hình vuông lần lượt là a 2 và b 2

Câu hỏi 3 trang 130:

Tìm độ dài x trên các hình 124, 125

Hướng dẫn giải chi tiết:

Áp dụng định lí Py – ta – go

Tam giác ABC vuông tại B

⇒ x = 6 (cm)

Tam giác DEF vuông tại D

⇒ x = √2 (cm)

Câu hỏi 4 trang 130:

Vẽ tam giác ABC có AB = 3cm; AC = 4cm; BC = 5cm. Hãy dùng thước đo góc để xác định số đo của góc BAC

Hướng dẫn giải chi tiết:

Số đo góc BAC là 90 o

Bài 53 (trang 131 SGK Toán 7 Tập 1):

Tìm độ dài x trên hình 127.

Phương pháp giải:

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

Hướng dẫn giải chi tiết:

– Hình a

Áp dụng định lí Pi-ta-go ta có:

– Hình b

⇒ x = √5

– Hình c

⇒ x = 20

– Hình d

Theo định lí Pi-ta-go ta có:

⇒ x = 4

Kiến thức áp dụng

Định lý Pytago: ” Trong tam giác vuông, tổng bình phương cạnh góc vuông bằng bình phương cạnh huyền”.

Bài 54 (trang 131 SGK Toán 7 Tập 1):

Đoạn lên dốc từ C đến A dài 8,5m, độ dài CB bằng 7,5m. Tính chiều cao AB.

Phương pháp giải:

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

Hướng dẫn giải chi tiết:

Áp dụng định lí Py-ta-go vào tam giác vuông ABC vuông tại B ta có:

= 72,25 – 56,25

=16

⇒ AB = 4 (m)

Kiến thức áp dụng

Định lý Pytago: ” Trong tam giác vuông, tổng bình phương cạnh góc vuông bằng bình phương cạnh huyền”.

Bài 55 (trang 131 SGK Toán 7 Tập 1):

Tính chiều cao của bức tường, biết rằng chiều dài của thang là 4m và chân thang cách tường 1m.

Phương pháp giải:

Áp dụng định lý Py-ta-go để tính chiều cao của bức tường.

Hướng dẫn giải chi tiết:

Kí hiệu như hình vẽ:

Vì mặt đất vuông góc với chân tường nên góc C = 90º.

Áp dụng định lí Pi-ta-go trong ΔABC ta có:

⇒ AC = √15 ≈ 3,87(m) hay chiều cao của bức tường là 3,87m.

Kiến thức áp dụng

Định lý Pytago: ” Trong tam giác vuông, tổng bình phương cạnh góc vuông bằng bình phương cạnh huyền”.

1.2. Lý thuyết trọng tâm

1. Định lý Pytago

Trong một tam giác vuông, bình phương của cạnh huyền bằng tổng các bình phương của hai cạnh góc vuông.

2. Định lý Pytago đảo

Nếu một tam giác có bình phương của một cạnh bằng tổng các bình phương của hai cạnh kia thì tam giác đó là tam giác vuông.

2. File tải hướng dẫn giải Toán lớp 7 Bài 7: Định lý Pytago:

Hy vọng tài liệu sẽ hữu ích cho các em học sinh và quý thầy cô giáo tham khảo và đối chiếu đáp án chính xác.

Định Lý Pytago Trong Tiếng Tiếng Anh

Dãy số có sự liên hệ khá thú vị… với định lý Pytago và tỷ lệ vàng.

The sequence has an interesting connection to Pythagoras’theorem of the Golden Section.

OpenSubtitles2024.v3

Có lẽ bạn biết Pytago từ những định lý như Định lý Pytago —

You might remember Pythagoras from such theorems as the Pythagorean theorem —

ted2024

Công thức này là định lý cos, mà đôi khi được gọi là công thức tổng quát hóa của định lý Pytago.

This formula is the law of cosines, sometimes called the generalized Pythagorean theorem.

WikiMatrix

Khi θ = π/2, tam giác ADB trở thành tam giác vuông, và r + s = c, và định lý trở về định lý Pytago.

When θ = π/2, ADB becomes a right triangle, r + s = c, and the original Pythagorean theorem is regained.

WikiMatrix

Đây được gọi là định lý Pytago, và một bộ ba số thỏa mãn được điều kiện này được gọi là bộ ba số Pytago.

This is now known as the Pythagorean theorem, and a triple of numbers that meets this condition is called a Pythagorean triple – both are named after the ancient Greek Pythagoras.

WikiMatrix

Pytago thành lập Trường Pytago, được ghi công đã chứng minh định lý Pytago lần đầu tiên mặc dù định lý này có một lịch sử lâu dài.

Pythagoras established the Pythagorean School, which is credited with the first proof of the Pythagorean theorem, though the statement of the theorem has a long history.

WikiMatrix

Định lý Pytago đã được biết đến từ lâu trước thời của Pythagoras, nhưng ông được coi là người đầu tiên nêu ra chứng minh định lý này.

The Pythagorean theorem was known long before Pythagoras, but he may well have been the first to prove it.

WikiMatrix

Trong toán học, định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông.

In mathematics, the Pythagorean theorem, also known as Pythagoras’ theorem, is a fundamental relation in Euclidean geometry among the three sides of a right triangle.

WikiMatrix

Theo Thomas L. Heath (1861–1940), không có một ghi chép cụ thể về sự tồn tại của định lý Pytago trong các văn tự còn lưu lại của Hy Lạp từ 5 thế kỷ sau thời của Pythagoras.

According to Thomas L. Heath (1861–1940), no specific attribution of the theorem to Pythagoras exists in the surviving Greek literature from the five centuries after Pythagoras lived.

WikiMatrix

Theo (Hayashi 2005, pp. 363), cuốn Śulba Sūtras chứa “diễn đạt bằng lời nói tồn tại sớm nhất của định lý Pytago trên thế giới, mặc dù nó đã được những người Babylon cổ đại biết đến từ trước.

According to (Hayashi 2005, pp. 363), the Śulba Sūtras contain “the earliest extant verbal expression of the Pythagorean Theorem in the world, although it had already been known to the Old Babylonians.

WikiMatrix

Có thể đi đến định lý Pytago bằng cách nghiên cứu sự thay đổi của một cạnh kề tạo ra thay đổi như thế nào đối với cạnh huyền và áp dụng phương pháp vi tích phân.

One can arrive at the Pythagorean theorem by studying how changes in a side produce a change in the hypotenuse and employing calculus.

WikiMatrix

Carl Boyer states that the Pythagorean theorem in Śulba-sũtram may have been influenced by ancient Mesopotamian math, but there is no conclusive evidence in favor or opposition of this possibility.

WikiMatrix

Định lý này có thể coi là định lý có nhiều cách chứng minh nhất (luật tương hỗ bậc hai là một định lý khác có nhiều cách chứng minh); trong cuốn sách The Pythagorean Proposition nêu ra 370 cách chứng minh cho định lý Pytago.

This theorem may have more known proofs than any other (the law of quadratic reciprocity being another contender for that distinction); the book The Pythagorean Proposition contains 370 proofs.

WikiMatrix

Samos là nơi sinh của nhà triết học và toán học Pythagoras (Pythagore), Định lý Pytago được đặt theo tên ông, nhà triết học Epicurus, và nhà thiên văn học Aristarchus của Samos, cá nhân đầu tiên đề xuất rằng Trái Đất xoay quanh mặt trời.

Samos is the birthplace of the Greek philosopher and mathematician Pythagoras, after whom the Pythagorean theorem is named, the philosopher Epicurus, and the astronomer Aristarchus of Samos, the first known individual to propose that the Earth revolves around the sun.

WikiMatrix

Có thể chứng minh định lý đảo Pytago bằng cách sử dụng định lý cos hoặc chứng minh như sau: Gọi ABC là tam giác với các cạnh a, b, và c, với a2 + b2 = c2.

It can be proven using the law of cosines or as follows: Let ABC be a triangle with side lengths a, b, and c, with a2 + b2 = c2.

WikiMatrix

Định lý Pytago còn thu hút nhiều sự chú ý từ bên ngoài phạm vi toán học, như là một biểu tượng toán học thâm thúy, bí ẩn, hay sức mạnh của trí tuệ; nó cũng được nhắc tới trong văn học, kịch bản, âm nhạc, bài hát, con tem và phim hoạt hình.

The Pythagorean theorem has attracted interest outside mathematics as a symbol of mathematical abstruseness, mystique, or intellectual power; popular references in literature, plays, musicals, songs, stamps and cartoons abound.

WikiMatrix

Các nhà vật lý Hoa Kỳ Leon M. Lederman và Christopher T. Hill viết trong cuốn sách của họ Symmetry and the Beautiful Universe rằng định lý Noether “rõ ràng là một trong những định lý toán học quan trọng nhất từng được chứng minh trong định hướng sự phát triển của vật lý hiện đại, có thể sánh ngang hàng với định lý Pytago“.

American physicists Leon M. Lederman and Christopher T. Hill argue in their book Symmetry and the Beautiful Universe that Noether’s theorem is “certainly one of the most important mathematical theorems ever proved in guiding the development of modern physics, possibly on a par with the Pythagorean theorem“.

WikiMatrix

Ở Ấn Độ, trong đoạn kinh Sulba Sutra Baudhayana , thời điểm khoảng giữa thế kỷ VIII và V TCN, có chứa danh sách các bộ ba Pytago được khám phá ra bằng phương pháp đại số, một phát biểu về định lý Pytago, và một chứng minh bằng phương pháp hình học của định lý Pytago đối với trường hợp tam giác vuông cân.

In India, the Baudhayana Sulba Sutra, the dates of which are given variously as between the 8th and 5th century BC, contains a list of Pythagorean triples discovered algebraically, a statement of the Pythagorean theorem, and a geometrical proof of the Pythagorean theorem for an isosceles right triangle.

WikiMatrix

Một dạng tổng quát hơn của định lý Pytago cho không gian ba chiều là định lý de Gua, đặt tên theo Jean Paul de Gua de Malves: Nếu một tứ diện có một góc khối vuông (như góc của một hình lập phương), thì bình phương diện tích của mặt đối diện với góc khối vuông bằng tổng bình phương diện tích của ba mặt còn lại.

A substantial generalization of the Pythagorean theorem to three dimensions is de Gua’s theorem, named for Jean Paul de Gua de Malves: If a tetrahedron has a right angle corner (like a corner of a cube), then the square of the area of the face opposite the right angle corner is the sum of the squares of the areas of the other three faces.

WikiMatrix

Định Lý Pitago Và Cách Áp Dụng Định Lý Vào Làm Bài Tập

1. Định lý pitago là gì?

Định lý Pytago (còn gọi là định lý Pythagoras theo tiếng Anh) là một liên hệ căn bản trong hình học Euclid giữa ba cạnh của một tam giác vuông. Định lý pitago thuận phát biểu rằng bình phương cạnh huyền (cạnh đối diện với góc vuông) bằngtổng bình phương của hai cạnh góc vuông. Định lý có thể viết thành một phương trình liên hệ độ dài của các cạnh là a, b và c, thường gọi là “công thức Pytago” (c^2=a^2+b^2) trong đó c độ dài là cạnh huyền, a,b là độ dài 2 cạnh góc vuông.

Như vậy trong bất kì 1 tam giác vuông nào thì bình phương cạnh huyền cũng sẽ bằng tổng bình phương hai cạnh góc vuông.

Theo định lý cho biết, cạnh góc vuông của tam giác kí hiệu là a và b, còn cạnh huyền kí hiệu là c của tam giác vuông đó. Ta luôn có phương trình của định lý Pitago như sau:

(a^2+b^2=c^2) (với c là độ dài cạnh huyền và a và b là độ dài hai cạnh góc vuông hay còn gọi là cạnh kề.)

Ở hình trên ta có 2 hình vuông lớn có diện tích bằng nhau là: (a+b)^2

Trong mỗi hình lại có 4 tam giác vuông bằng nhau có diện băng nhau là 1/2(a.b). Do đó diện tích khoảng trắng của 2 hình sẽ bằng nhau.

Như vậy, diện tích của hình vuông c sẽ bằng tổng diện tích của 2 hình vuông a và b nên ta có: (c^2=a^2+b^2)

2. Định lý pitago đảo

Định lý Pitago được sử dụng rất phổ biến cũng như gồm nhiều ứng dụng trong thực tiễn. Đây là một định lý toán học quan trọng hàng đầu của hình học cơ bản.

Chứng minh định lý pitago đảo:

Gọi ABC là tam giác với các cạnh a, b, và c, với (a^2+b^2=c^2). Dựng một tam giác thứ hai có các cạnh bằng a và b và góc vuông tạo bởi giữa chúng. Theo định lý Pytago thuận, cạnh huyền của tam giác vuông thứ hai này sẽ bằng c=√(a²+b²) và bằng với cạnh còn lại của tam giác thứ nhất. Bởi vì cả hai tam giác có ba cạnh tương ứng cùng bằng chiều dài a, b và c, do vậy hai tam giác này phải bằng nhau. Do đó góc giữa các cạnh a và b ở tam giác đầu tiên phải là góc vuông.

Chứng minh định lý đảo ở trên sử dụng chính định lý Pytago. Cũng có thể chứng minh định lý đảo mà không cần sử dụng tới định lý thuận.

Nếu (a^2 + b^2 = c^2), thì tam giác là tam giác vuông.

Nếu (a^2 + b^2 < c^2), thì nó là tam giác tù.

3. Những điều cần lưu ý khi học định lý Pitago

Khi học định lý Pitago, để nắm chắc và áp dụng tốt trong quá trình làm và giải các bài tập, bạn cần lưu ý các điều sau:

* Cạnh huyền của tam giác vuông luôn:

Cắt ngang qua góc vuông mà không đi qua góc vuông

Đây là cạnh dài nhất của tam giác vuông

Cạnh huyền được gọi là C trong định lý Pitago

* Khi tính, bạn cần phải kiểm tra lại kết quả.

* Nhìn vào hình, bạn sẽ biết đâu là cạnh huyền vì đó là cạnh dài nhất đối diện góc lớn nhất. Còn cạnh ngắn nhất sẽ đối diện góc nhỏ nhất của tam giác.

* Ta chỉ tính được cạnh thứ 3 khi biết độ dài 2 cạnh còn lại trong tam giác vuông

* Nếu tam giác không phải là tam giác vuông, ta không thể áp dụng định lý pitago mà sẽ tính được khi biết thêm thông tin ngoài chiều dài 2 cạnh.

* Bạn nên vẽ tam giác để dễ dàng gán giá trị chính xác cho các cạnh a, b và c. Đặc biệt, các bài toán từ và toán logic áp dụng nhiều hơn cả.

* Nếu chỉ biết số đo một cạnh, ta không thể dùng định lý pitago để tính mà sẽ phải dùng hàm lượng giác (sin, cos, tan) hoặc tỉ lệ 30-60-90 / 45-45-90.

Đây là những lưu ý quan trọng để bạn có thể sử dụng định lý một cách linh hoạt cũng như trong những điều kiện nào thì không thể áp dụng được.

4. Cách áp dụng định lý pitago 4. 1. Cách tìm các cạnh của tam giác vuông

Dựa theo định lý Pitago, ta sẽ cùng đi tìm các cạnh của tam giác vuông theo các bước sau:

Bước 1: Điều kiện tam giác đang xét phải là tam giác vuông

Định lý Pitago chỉ áp dụng được cho trường hợp tam giác vuông. Vì vậy, để tìm được các cạnh của tam giác vuông, hình tam giác đó phải có điều kiện là tam giác vuông với một góc bằng 90 độ. Bạn có thể tìm thấy dấu hiệu hình tam giác vuông trên hình vẽ rất dễ dàng.

Bước 2: Chỉ ra được các cạnh của hình tam giác vuông

Nhìn vào hình, bạn hãy chỉ ra 2 cạnh góc vuông và cạnh huyền. Cạnh luôn đối diện với góc vuông, là cạnh dài nhất sẽ là cạnh huyền. Hai cạnh ngắn hơn sẽ mặc định là 2 cạnh góc vuông. Ví dụ nếu tam giác ABC có cạnh góc vuông là ABC thì cạnh góc vuông là cạnh AB và BC còn cạnh huyền là AC. Theo định lý Pitago, a, b là kí hiệu của 2 cạnh góc vuông, c là kí hiệu của cạnh huyền.

Bước 3: Xác định cạnh huyền cần tìm của tam giác vuông đó

Với định lý Pitago, ta có thể tìm được độ dài bất kỳ của cạnh của một tam giác vuông nào bằng công thức trên chỉ cần biết chiều dài 2 cạnh còn lại: (a^2+b^2=c^2). Có nghĩa là bạn sẽ xác định cạnh chưa biết là a, b hay c. Nếu đã biết độ dài của 2 cạnh và 1 cạnh chưa biết của hình tam giác, bạn có thể bắt đầu.

Ví dụ: Nếu bạn đã biết cạnh huyền và một trong các cạnh bên còn lại sẽ dễ dàng tính được cạnh thứ 3 theo công thức ở trên.

Nếu có hai cạnh chưa biết độ dài, bạn cần xác định một cạnh nữa mới có thể sử dụng định lý Pitago. Bạn sẽ dùng các hàm lượng giác cơ bản để tìm độ dài của một cạnh nữa nếu biết số đo của một góc nhọn trong tam giác đó.

Bước 4: Thay giá trị độ dài 2 cạnh vào phương trình (a^2+b^2=c^2)

Trong đó, a, b là hai cạnh góc vuông, c là cạnh huyền. Nếu a = 3, c = 5 ta có (3^2 + b^2 = 5^2)

Bước 5: Tính bình phương

Giải phương trình, bạn tính bình phương mỗi cạnh đã biết. Nếu đơn giản, bạn để ở dạng số mũ rồi tính sau. Trong ví dụ này, bình phương lên ta được 9 + (b^2) = 25

Bước 6: Tách biến chưa biết sang một vế của phương trình

Bước 7: Giảm bình phương của cả hai vế phương trình

Kết quả (b^2) = 16 cho thấy một vế của phương trình còn một biến bình phương còn vế kia là một số xác định. Giảm bình phương của cả 2 vế ta sẽ được b = 4. Như vậy kết quả của bài toán là 4, chiều dài số đo của cạnh cần tìm.

Bước 8: Sử dụng định lý Pitago để tìm cạnh của tam giác vuông trong thực tế

Định lý Pitago được sử dụng rất nhiều trong thực tế. Vì vậy, bạn chỉ cần nhận biết tam giác vuông trong thực tế trong bất kỳ trường hợp nào. Áp dụng vào thực tế cuộc sống, chỉ cần 2 đường thẳng giao nhau hoặc 2 vật giao nhau tạo ra một góc vuông đồng thời có một đường thẳng hay vật thứ 3 cắt chéo qua góc vuông đã tạo ra một hình tam giác vuông. Từ đó, bạn có thể sử dụng định lý pitago tìm độ dài cạnh nào đó khi biết số đo 2 cạnh còn lại.

4. 2. Cách tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y

Khi đã biết 2 tọa độ (x,y) là (6, 1), (3, 5), ta sẽ tính khoảng cách giữa 2 điểm trong mặt phẳng X-Y theo các bước sau:

Bước 1: Xác định 2 điểm trong mặt phẳng X-Y

Dựa vào định lý Pitago, ta dễ dàng tính được khoảng cách đường thẳng giữa 2 điểm trong mặt phẳng X-Y. Lúc này, ta chỉ cần biết tọa độ x và y của 2 điểm bất kỳ. Bình thường tọa độ x, y sẽ được viết theo cặp thứ tự là tọa độ (x,y)

Muốn tìm khoảng cách giữa 2 điểm này, ta coi mỗi điểm là một trong những góc nhọn của tam giác vuông để thực hiện tính số đo chiều dài cạnh a, cạnh b sau đó tính tiếp độ dài cạnh c là khoảng cách giữa 2 điểm.

Bước 2: Vẽ 2 điểm trên đồ thị

Tọa độ (x, y) trên mặt phẳng X-Y, trong đó x là tọa độ trên trục hoành, y là tọa độ trên trục tung. Từ đó, bạn có thể tìm khoảng cách giữa 2 điểm mà không cần vẽ đồ thị. Vẽ đồ thị ra, hình vẽ sẽ giúp ta nhìn trực quan và rõ ràng hơn rất nhiều.

Bước 3: Tìm độ dài các cạnh góc vuông của tam giác

Như vậy, hai cạnh còn lại của tam giác vuông này là a = 3, b = 4.

Bước 4: Dùng định lý pitago giải phương trình tìm cạnh huyền

Ở ví dụ ở trên, ta biết cạnh huyền là khoảng cách giữa 2 điểm của hình tam giác và tìm được 2 cạnh góc vuông còn lại ở trên. Bây giờ, chúng ta tìm cạnh huyền khi biết độ dài 2 cạnh góc vuông mà ta đặt là cạnh a và cạnh b.

Theo chúng tôi

Cập nhật thông tin chi tiết về Bài Tập Định Lý Pytago trên website 2atlantic.edu.vn. Hy vọng nội dung bài viết sẽ đáp ứng được nhu cầu của bạn, chúng tôi sẽ thường xuyên cập nhật mới nội dung để bạn nhận được thông tin nhanh chóng và chính xác nhất. Chúc bạn một ngày tốt lành!